3D Human Posture Segmentation by Constrained Spectral Clustering

نویسندگان

  • Jun Cheng
  • Maoying Qiao
  • Wei Bian
  • Dacheng Tao
چکیده

In this paper, we propose a new algorithm for partitioning human posture represented by 3D point clouds sampled from the surface of human body. The algorithm is formed as a constrained extension of the recently developed segmentation method, spectral clustering (SC). Two folds of merits are offered by the algorithm: 1) as a nonlinear method, it is able to deal with the situation that data (point cloud) are sampled from a manifold (the surface of human body) rather than the embedded entire (3D) space; 2) by using constraints, it facilitates the integration of multiple similarities for human posture partitioning, and it also helps to reduce the limitations of spectral clustering. We show that the constrained spectral clustering (CSC) still can be solved by generalized eigen-decomposition. Experimental results confirm the effectiveness of the proposed algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images

Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...

متن کامل

Learning Shape Segmentation Using Constrained Spectral Clustering and Probabilistic Label Transfer

We propose a spectral learning approach to shape segmentation. The method is composed of a constrained spectral clustering algorithm that is used to supervise the segmentation of a shape from a training data set, followed by a probabilistic label transfer algorithm that is used to match two shapes and to transfer cluster labels from a training-shape to a test-shape. The novelty resides both in ...

متن کامل

Target detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV

In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...

متن کامل

Lip Posture Estimation using Kinematically Constrained Mixture Models

A novel approach for estimating 3D lip posture from monocular video sequences is presented. The lips are modeled as a four body closed kinematic chain with each body possessing translational, rotational and prismatic (to account for deformations) degrees of freedom. Geometric constraints relating these bodies to each other, and to the face as a whole, are used to constrain the space of possible...

متن کامل

Robust Spectral 3D-Bodypart Segmentation Along Time

In this paper we present a novel tool for body-part segmentation and tracking in the context of multiple camera systems. Our goal is to produce robust motion cues over time sequences, as required by human motion analysis applications. Given time sequences of 3D body shapes, body-parts are consistently identified over time without any supervision or a priori knowledge. The approach first maps sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013